Deep Exploration via Bootstrapped DQN

نویسندگان

  • Ian Osband
  • Charles Blundell
  • Alexander Pritzel
  • Benjamin Van Roy
چکیده

Efficient exploration in complex environments remains a major challenge for reinforcement learning. We propose bootstrapped DQN, a simple algorithm that explores in a computationally and statistically efficient manner through use of randomized value functions. Unlike dithering strategies such as -greedy exploration, bootstrapped DQN carries out temporally-extended (or deep) exploration; this can lead to exponentially faster learning. We demonstrate these benefits in complex stochastic MDPs and in the large-scale Arcade Learning Environment. Bootstrapped DQN substantially improves learning times and performance across most Atari games.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Estimates for Efficient Neural Network-based Dialogue Policy Optimisation

In statistical dialogue management, the dialogue manager learns a policy that maps a belief state to an action for the system to perform. Efficient exploration is key to successful policy optimisation. Current deep reinforcement learning methods are very promising but rely on ε-greedy exploration, thus subjecting the user to a random choice of action during learning. Alternative approaches such...

متن کامل

Bayes By Backprop Neural Networks for Dialogue Management

In dialogue management for statistical spoken dialogue systems, an agent learns a policy that maps a belief state to an action for the system to perform. Efficient exploration is key to successful dialogue policy estimation. Current deep reinforcement learning methods are very promising but rely on ε-greedy exploration, which is not as sample efficient as methods that use uncertainty estimates,...

متن کامل

Whatever Does Not Kill Deep Reinforcement Learning, Makes It Stronger

Recent developments have established the vulnerability of deep Reinforcement Learning (RL) to policy manipulation attacks via adversarial perturbations. In this paper, we investigate the robustness and resilience of deep RL to training-time and test-time attacks. Through experimental results, we demonstrate that under noncontiguous trainingtime attacks, Deep Q-Network (DQN) agents can recover a...

متن کامل

Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. The primary difficulty arises due to insufficient exploration, resulting in an agent being unable to learn robust value functions. Intrinsically motivated agents can explore new behavior for its own sake rather than to directly solve problems. Such intrinsic behaviors...

متن کامل

How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies

Using deep neural nets as function approximator for reinforcement learning tasks have recently been shown to be very powerful for solving problems approaching real-world complexity such as [1]. Using these results as a benchmark, we discuss the role that the discount factor may play in the quality of the learning process of a deep Q-network (DQN). When the discount factor progressively increase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016